Research on and Application of EMD in Eliminating Trend Item of Non-stationary Random Signals EMD在非平稳随机信号消除趋势项中的研究与应用
The Green Bank telescope in West Virginia has been specially designed to distinguish between random signals and signals which might be in code. 西弗吉尼亚州的格林·班克望远镜是专门为区分随机信号与或许是电码信号而专门设计的。
In this paper, an effective algorithm is derived for optimal estimation and multiresolutional decomposition of noisy random signals. 本文介绍了由最优估计和多分辨率分解含噪声信号产生的一种有效算法。
The influence of random signals on the power spectral density characteristic of switching function is studied and a practical design of randomized PWM is proposed. 分析了随机信号对开关函数功率谱密度特性的影响,据此提出随机脉宽调制技术的实用化设计方法。
An improved GM-AR model for a micromechanical gyroscope's nonstationary random signals 微机械陀螺非平稳随机信号改进GM-AR模型研究
Robust Detection of Random Signals in Dependent Noise 相关噪声中随机信号的Robust检测
α-stable processes can better model the impulsive random signals and noises in physical observation. 口稳定分布可以更好地描述实际应用中所遇到的具有脉冲特性的随机信号和噪声。
It is required to analyze random signals in treating many Stochastic vibration problems. 对随机信号的分析是研究、处理各种随机振动问题的必要步骤。
Two Ways of Non-stationary Random Signals Spectrum Analysis 非平稳随机信号谱分析的两个途径
Based on correlation filtering, the identification principle using random signals is investigated. The method can eliminate output steady disturbance, random disturbance and abrupt disturbance. 研究了用伪随机信号进行系统辨识的相关滤波原理,讨论了消除系统输出端稳态输出干扰、随机干扰及突变干扰的原理和逆重复伪随机信号参数的选择依据。
The stimulation waves were composed of carrier waveform signals, which were square waves and non-polar differential exponent pulse waves, and modulated amplitude signals, which were periodic signals and random signals. 运用自相关技术进行了载波为方波、无极性指数脉冲波,调幅波的调制信号为周期性信号、随机信号的电刺激波形对机体适应性问题的研究。
The correlation analysis indicated that the pressure fluctuation signals exist between periodic signals and random signals. 自相关性分析表明压力波动信号具有长期相关性,且处在周期信号与随机信号之间。
In the subsystem of random signal generation and data acquisition, we realize the four random signals generation and acquisition simultaneously. 在随机信号产生及数据采集子系统中,实现了多路随机信号产生发送及多路数据同时采集;独立设计了量子密钥分发的数据处理子系统;
It is especially important for the analysis on transient signals and zion-stationary random signals with changing frequencies. 这对瞬态信号和变频率的非平稳随机信号分析尤为重要。
Second-order almost cyclostationary complex processes are complex random signals with almost periodically time-varying statistics. 复准循环平稳信号为具有准周期时变统计特性的复随机信号,它对研究信息系统中的一些非高斯过程有重要意义。
The wavelet variance is introduced based on wavelet transform. Its utility of reflecting the statistic characteristics of random signals and application in feature extraction are analyzed. 根据小波变换的特点,引入了单一尺度下的小波方差,研究了其在反映随机信号的统计特征方面的特点,以及在信号特征提取中的应用。
Ultrasonic backscattered grain echoes are random signals which bear information related to the attenuation properties of the materials. 材料中颗粒(或微结构的不连续)造成的超声背散射信号是一种随机信号,这种信号的衰减特性与材料中微结构状态有关。
In this paper, a mathematical model is used to characterize this random signals, and a time averaging method is used for obtaining the ultrasonic attenuation coefficient. 本文提供了一种用于识别这类随机信号的数学统计模型,并介绍了一种时间平均法用来获取超声背散射信号的衰减系数。
A generator of pseudo& random signals with desired probability density function is indispensable to simulation of discrete systems. 在所有离散系统的模拟中,提供合适的概率密度函数的伪随机信号发生器是必不可少的。
An algorithm property analysis for time varying parameters estimation of nonstationary random signals model 一种非平稳随机信号模型的时变参数估计算法性能研究
Impact Response and Response of Random Signals 冲击响应和任意信号的响应
The correlation method and FFT method of the power spectrum estimation could not completely reflect the concept of the power spectrum of the non-stationary random signals because of data truncation. 对于非平稳随机信号的功率谱分析,采用自相关函数傅里叶变换和直接傅里叶变换分析时,由于存在数据截断,二者从概念上都不能很好地反映随机信号的功率谱。
The reliability of the time-series analysis method in processing unsteady random signals is verified. 验证了时间序列分析方法在非平稳随机信号处理方面的可靠性;
The simulation testing of random signals suggests that the method is effective for signal source identification. 随机信号的仿真试验说明,基于相干函数分析的振动信号源识别方法对信号源的识别具有满意的效果。
Above all, high-order spectrum analysis method becomes an important tool to analysis and processes the modern random signals. 这些性质是的高阶谱分析迅速成为现代随机信号分析与处理的一个重要工具。
The wavelet analysis has more advantage on processing the non-stationary random signals than the traditional Fourier transform, so the wavelet analysis processed the signals is a better choice. 由于小波分析在处理非平稳随机信号上比传统的傅里叶变换有着巨大的优势,所以本系统采用小波分析方法完成信号的分析和处理。
Acoustic emission signals with transient and random, which are made up of a series of signals rich in frequency and pattern, belong to non-stationary random signals. 声发射信号具有瞬态性和随机性,并且是由一系列频率和模式丰富的信号组成。属于非平稳随机信号。
In this paper, according to auto-correlation function of random signals, we in-depth study the filtering method of the stationary random signal for the problem of noise ( especially the singular value, also known as outliers) in the random signal. 本文针对随机信号中存在噪声(特别是奇异值,也称野值)的一般性问题,从随机信号自相关函数入手,对平稳随机信号的滤波方法进行了较深入的研究。
Based on independent component analysis ( ICA) algorithm, this paper analyzes and processes the random signals and real radar signals successively, which is designed to increasing the number of individual samples and get the sounding data of the same precision in less scanning time. 基于时间结构的独立成分分析法(ICA),先后对随机信号和实际雷达信号进行了独立成分分析处理,以增加独立样本数。旨在以更少的扫描时间,得到相同精度的探测数据。
However, with the intensive study of random signals and noises, people are not satisfied with the status quo. Frequency estimation based on higher-order moments and fractional-order moments gradually becomes a new concern. 然而,随着随机信号和噪声的研究深入,人们不满足现状,基于高阶矩和分数阶矩的频率估计逐渐成为新的研究热潮。